9.2 DEMAND PAGING 301

Disk
PalfrftrTi:: le Block Page Frames
Virt Descriptors
Addr Phys PageState State Block _Page Disk Block Count
0

IK | 1648 |Inv |||File| 3

2K

3K | None |Inv DF| 35

4K 1036 387 0

1648 1618 1

64K| 1917 |Inv |||Disk| 1206 |

65K| None | Inv DZ

66K| 1036 |Inv || |Disk| 847 1861 1206 0

67K

Figure 9.22. Occurrence of a Validity Fault '

a process faults when accessing virtual address 64K in Figure 9.22. Searching the
page cache, the kernel finds that page frame 1861 is associated with disk block
1206, as is the disk block descriptor. It resets the page table entry for virtual
address 64K to point to page 1861, sets the valid bit, and returns. The disk block
number thus associates a page table entry with a pfdata table entry. explaining why
both tables save it.

Similarly, the fault handler does not have to read the page into memory if
another process had faulted on the same page but had not completely read it in yet.
The fault handler finds the region containing the page table entry locked by
another instance of the fault handler. It sleeps until the other instance of the fault
handler completes, finds the page now valid, and returns. Figure 9.24 depicts such
a scenario.
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Disk
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Figure 9.23, After Swapping Page into Memory
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Figure 9.24. Double Fault on a Page

If a copy of the page does not exist on a swap device but is in the original
exccutable file (case 3), the kernel reads the page from the original file. The fault
handler examines the disk block descriptor, finds the logical block number in the
file that contains the page, and finds the inode associated with the region table
entry. It uses the logical block number as an offset into the array of disk block
numbers attached to the inode during exec. Knowing the disk block number, it
reads the page into memory. For zxample, the disk block descriptor for virtual
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address 1K in Figure 9.22 shows that the page contents are in logical block 3 in the
executable file.

If a process incurs a page fault for a page marked “demand fill” or “demand
zero” (cases 4 and 5), the kernel allocates a free page in memory and updates the
appropriate page table entry. For “demand zero,” it also clears the page to zero.
Finally, it clears the “demand fill” or “demand zero” flags: The page is now valid
in memory and its contents are not duplicated on a swap device or in a file system.
This would happen when accessing virtual addresses 3K and 65K in Figure 9.22:
No process had accessed those pages since the file was execed.

The validity fault handler concludes by setting the valid bit of the page and
clearing the modify bit. It recalculates the process priority, because the process
may have slept in the fault handler at a kernel-level priority, giving it an unfair
scheduling advantage when returning to user mode. Finally, if returning to user
mode, it checks for receipt of any signals that occurred while handling the page
fault.

9.2.3.2 Protection Fault Handler

The second kind of memory fault that a process can incur is a protection fault,
meaning that the process accessed a valid page but the permission bits associated
with the page did not permit access. (Recall the example of a process attempting
to write its text space, in Figure 7.22.) A process also incurs a protection fault
when it attempts to write a page whose copy on write bit was set during the fork
system call. The kernel must determine whether permission was denied because the
page requires a copy on write or whether something truly illegal happened.

The hardware supplies the protection fault handler with the virtual address
where the fault occurred, and the fault handler finds the appropriate region and
page table entry (Figure 9.25). It locks the region so that the page stealer cannot
steal the page while the protection fault handler operates on it. If the fault handler
determines that the fault was caused because the copy on write bit was set, and if
the page is shared with other processes, the kernel allocates a new page and copies
the contents of the old page to it; the other processes retain their references to the
old page. After copying the page and updating the page table entry with the new
page number, the kernel decrements the reference count of the old pfdata table
entry. Figure 9.26 illustrates the scenario: Three processes share physical page
828. Process B writes the page but incurs a protection fault, because the copy on
write bit is set. The protection fault handler allocates page 786, copies the contents
of page 828 to the new page, decrements the reference count of page 828, and
updates the page table entry accessed by process B to point to page 786.

' If the copy on write bit is set but no other procésses share the page, the kernel
allows the process to reuse the physical page. It turns off the copy on write bit and
disassociates the page from its disk copy, if one exists, because other processes may
share the disk copy. It then removes the pfdata table entry from the page queue,
because the new copy of the virtual page is not on the swap device. Then, it
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algorithm pfault /* protection fault handler */
input: address where process faulted
output: none

{
find region, page table entry, disk block descriptor,
page frame for address, lock region;
if (page not valid in memory)

goto out;
if (copy on write bit not set)
goto out; /* real program error — signal */

if (page frame reference count > 1)

allocate a new physical page;

copy contents of old page to new page;

decrement old page frame reference count;

update page table entry to point to new physical page;

else /* "steal" page, since nobody else is using it */

if (copy of page exists on swap device)
free space on swap device, break page association;
if (page is on page hash queue)
remove from hash queue;
}
set modify bit, clear copy on write bit in page table entry;
recalculate process priority;
check for signals;
out: unlock region;

)

Figure 9.25. Algorithm for Protection Fault Handler

decrements the swap-use count for the page and, if the count drops to 0, frees the
swap space (see exercise 9.11).

If a page table entry is invalid and its copy on write bit is set to cause a
protection fault, let us assume that the system handles the validity fault first when
a process accesses the page (exercise 9.17 covers the reverse case). Nevertheless,
the protection fault handler must check that a page is still valid, because it could
sleep when locking a region, and the page stealer could meanwhile swap the page
from memory. If the page is invalid (the valid bit is clear), the fault handler
returns immediately, and the process will incur a validity fault. The kernel handles
the validity fault, but the process will incur the protection fault again. More than
likely, it will handle the final protection fault without any more interference,
because it will take a long time until the page will age sufficiently to be swapped
out. Figure 9.27 illustrates this sequence of events.
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(a) Before Proc B Incurs Protection Fault

Page Table Entry - Proc A
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Page Frame 828

Mable Entry - Proc B Ref Count 2-

Page 786 Valid

Page Frame 786
Page Table Entry - Proc C

Page 828 Valid, Copy on Write

Ref Count 1

(b) After Protection Fault Handler Runs for Proc B
Figure 9.26. Protection Fault with Copy on Write Set
When the protection fault handler finishes executing, it sets the modify and

protection bits, but clears the copy on write bit. It recalculates the process priority
and checks for signals, as is done at the end of the validity fault handler.
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Figure 9.27. Interaction of Protection Fault and Validity Fault

9.2.4 Demand Paging on Less-Sophisticated Hardware

The algorithms for demand paging are most efficient if the hardware sets the
reference and modify bits and causes a protection fault when a process writes a
page whose copy on write bit is set. However, it is possible to implement the
paging algorithms described here if the hardware recognizes only the valid and
protection bits. If the valid bit is duplicated by a software-valid bit that indicates
whether the page is really valid or not, then the kernel could turn off the hardware
valid bit and simulate the setting of the other bits in software. For example, the
VAX-11 hardware does not have a reference bit (see [Levy 82]). The kernel can
turn off the hardware valid bit for the page and follow this scenario: If a process
references the page, it incurs a page fault because the hardware valid bit is off, and
the page fault interrupt handler examines the page. Because the software-valid bit
is set, the kernel knows that the page is really valid and in memory; it sets the
software reference'bit and turns the hardware valid bit on, but it will have acquired
the knowledge that the page had been referenced. Subsequent references to the
page will not incur a fault because the hardware valid bit is on. When the page
stealer examines the page, it turns off the hardware valid bit again, causing
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Hardware Software Software Hardware Software Software
Valid WValid  Reference Valid - Valid Reference
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(a) Before Modifying Page (b) After Modifying Page

Figure 9.28. Mimicking Hardware Modify Bit in Software

processes to fault when' referencing the page, repeating the cycle. Figure 9.28
depicts this case.

9.3 A HYBRID SYSTEM WITH SWAPPING AND DEMAND PAGING

Although demand paging systems treat memory more flexibly than swapping
systems, situations can arise where the page stealer and validity. fault handler
thrash because of a shortage of memory. If the sum of the working sets of all
processes is greater than the physical memory on a machine, the fault handler will
usually sleep, because it cannot allocate pages for a process. The page stealer will
not be able to steal pages fast enough, because all pages are in a working set.
System throughput suffers because the kernel spends too much time in overhead,
rearranging memory at a frantic pace.

The System V kernel runs swapping and demand paging algorithms to avoid
thrashing problems. When the kernel cannot allocate pages for a process, it wakes
up the swapper and puts the calling process into a state that is the equivalent of
“ready to run but swapped.” Several processes may be in this state simultaneously.
The swapper swaps out entire processes until available memory exceeds the high-
water mark. For each process swapped out, it makes one ‘‘ready-to-run but
swapped” process ready to run. It does not swap those processes in via the normal
swapping algorithm but lets them fault in pages as heeded. Later iterations of the
swapper will allow other processes to be faulted in if there is sufficient memory in
the system. This method slows down the system fault rate and reduces thrashing; it
is similar in philosophy to methods used in the VAX/VMS operating system ([Levy
82)).

9.4 SUMMARY

This chapter has explored the UNIX System V algorithms for process swapping
and demand paging. The swapping algorithm swaps entire processes between main
memory and a swap device. The kernel swaps processes from memory if their size
grows such that there is no more room in main memory (as a result of a fork,
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exec, or sbrk system call or as a result of normal stack growth), or if it has to
make room for a process being swapped in. The kernel swaps processes in via the
special swapper process, process 0, invoking it whenever there exists a “ready-to-
run” process on the swap device. Thec swapper swaps in all such processes until
there are no more processes on the swap device or until there is no more room in
memory. In the latter case, it attempts to swap processes from main memory, but
it reduces the amount of thrashing by prohibiting swapping of processes that do not
satisfy residency requirements; hence, the swapper is not always successful in
swapping all processes into memory during each pass. The clock handler wakes up
the swapper every second if it has work to do.

The implementation of demand paging allows processes to execute even though
their entire virtual address space is not loaded in memory; therefore the virtual size
of a process can exceed the amount of physical memory available in a system.
When the kernel runs low on free pages, the page stealer goes through the active
pages of everv region, marks pages eligible for stealing if they have aged
sufficiently, and eventually copies th m (01a swap device. When a process addresses
a virtual page that is currently swapped out, it incurs a validity fault. The kernel
invokes the validity fault handler to assign a new physical page to the region and
copies the contents of the virtual page to main memory.

With the implementation of the demand paging algorithm, several features
improve system performance. First, the kernel uses the copy on write bit for
forking processes, removing the need to make physical copies of pages in most
cases. Second, the kernel can demand page contents of an executable file from the
file system, eliminating the need for exec to read the file into memory immediately.
This helps performance because such pages may never be needed during the
lifetime of a process, and it eliminates extra thrashing caused if the page stealer
were to swap such pages from memory before they are used.

9.5 EXERCISES

1. Sketch the design of an algorithm mfree, which frees space and returns it to a map.

2. Section 9.1.2 states that the system locks a process being swapped so that no other
process can swap it while the first operation is underway. What would happen if the
system did not lock the process?

3. Suppose the u area contains the segment tables and page tables for a process. How
can the kernel swap the u area out?

4. If the kernel stack is inside the u area, why can’t a process swap itself out? How
would you encode a kernel process to swap out other processes and how should it be
invoked? ‘

* 5. Suppose the kernel attempts to swap out a process to make room for processes on a
swap device. If there is not enough space on any swap, devices, the swapper sleeps
until more space becomes available. Is it possible for all processes in memory to be
asleep and for all ready-to-run processes to be on the swap device? Describe such a
scenario. What should the kernel do to rectify the situation?
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Reconsider the swapping example in Figure 9.10 if there is room for only 1 process in
memory.

Reconsider the swapping example in Figure 9.11. Construct an example where a
process is permanently starved fr,omi usc of the CPU. Is there any way to prevent
this? ;

mainQ
{
f0;
g0;
}
fO
{
vfork();
}
g0
{
int blast[100], i;
for G=0; i< 100; i++)
blast[i] = i;
)

Figure 9.29. Vfork and More Corruption

What happens when executing the program in Figure 9.29 on a 4.2 BSD system?
What happens to the parent’s stack?

Why is it advantageous to schedule the child process before the parent after a fork
call if copy on write bits are set on shared pages? How can the kernel force the child
to run first?

The validity fault algorithm presented in the text swaps in one page at a time. Its
efficiency can be improved by prepaging other pages around the page that caused the
fault. Enhance the page fault algorithm to allow prepaging.

The algorithms for the page stealer and for the validity fault handler assume that the
size of a page equals the size of a disk block. How should the algorithms be enhanced
to handle the cases where the respective sizes are not equal?

When a process forks, the page use count in the pfdata tabie is incremented for all
shared pages. Supposc the page stealer swaps a (shared) page to a swap device, and
one process (say, the parent) later faults it in. The virtual page now resides in a
physical page. Explain why the child process will always be able to find a legal copy
of the page, even after the parent writes the page. If the parent writes the page, why
must it disassociate itself from the disk copy immediately?

What should a fault handler do if the system runs out of pages?

Design an algorithm that pages out infrequently used parts of the kernel. What parts
of the kernel cannot be paged and how should they be identified?
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Devise an algorithm that tracks the allocation of space on a swap device by medns of a
bit map instead of the maps described in the chapter. Compare the efficiency of the
two methods.

Suppose a machine has no hardware valid bit but has protection bits to allow read,
write, and execute from a page. Simulate manipulation of a software valid bit.

The VAX-11 hardware checks for protection faults before validity faults. What
ramifications does this have for the algorithms for the fault handlers?

The plock system call allows superusers to lock and unlock the text and data regions
of the calling process into memory. The swapper and page stealer processes cannot
remove locked pages from memory. Processes that use this call never have to wait to
be swapped in, assuring them faster response than other processes. How should the
system call be implemented? Should there be an option to lock the stack region into
memory too? What should happen if the total memory space of plocked regions is
greater than the available memory on the machine?

What is the program in Figure 9.30 doing? Censider an alternative paging policy,
where each process has a maximum allowed number of pages in its working set.
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EXERCISES

struct fourmeg

{
int page[512]; /* assume int is 4 bytes */
} fourmeg[2048]; ’

main()
{
for (;;)
{
switch(fork())
{ .
case —1:  /* parent can’t fork———too many children */
case 0:  /* child */
funcO);
default:
continue;
}
)
}
funcQ
{
int i;
for (;;)
{
printf("proc %d loops again\n", getpid0);
for (=0; i< 2048; i++)
fourmeglil.page{0] = i;
}
)

Figure 9.30. A Misbehaving Program

n
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THE 1/0
SUBSYSTEM

The 1/0 subsystem allows a process to communicate with peripheral devices such
as disks, tape drives, terminals, printers, and networks, and the kernel modules that
control devices are known as device drivers. There is usually a one-to-one
correspondence between device drivers and device types: Systems may contain one
disk driver to control all disk drives, one terminal driver to control all terminals,
and one tape driver to control all tape drives. Installations that have devices from
more than one manufacturer — for example, two brands of tape drives — may
treat the devices as two different device types and have two separate drivers,
because such devices may require different command sequences to operate properly.
A device driver controls many physical devices of a given type. For example, one
terminal driver may control all terminals connected to the system. The driver
distinguishes among the many devices it controls: Output intended for one terminal
must not be sent to another.

The system supports “software devices,” which have no associated physical
device. For example, it treats physical memory as a device to allow a process
access to physical memory outside its address space, even though memory is not a
peripheral device. The ps command, for instance, reads kernel data structures
from physical memory to report process statistics. Similarly, drivers may write
trace records useful for debugging, and a trace driver may allow users to read the
records. Finally, the kernel profiler described in Chapter 8 is implemented as a
driver: A process writes. addresses of kernel routines found in the kernel symbol

12
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table and reads profiling results.

This chapter examines the interfaces between processes and the I/O subsystem
and between the machine and the device drivers. It investigates the general
structure and function of device drivers, then treats disk drivers and terminal
drivers as detailed examples of the general interface. It concludes with a
description of a new method for implementing device drivers called streams.

10.1 DRIVER INTERFACES

The UNIX system contains two types of devices, block devices and raw or
character devices. As defined in Chapter 2, block devices, such as disks and tapes,
look like random access storage devices io the rest of the system; character devices
include all other devices such as terminals and network media. Block devices may
have a character device interface, too.

The user interface to devices goes through the file system (recall Figure 2.1):
Every device has a name that looks like a file name and is accessed like a file. The
device special file has an inode and occupies a node in the directory hierarchy of
the file system. The device file is distinguished from other files by the file type
stored in its inode, either “block” or “character special,” corresponding to the
device it represents. If a device has both a block and character interface, it is
represented by two device files: its block device special file and its character device
special file. System calls for regular files, such as open, close, read, and write,
have an appropriate meaning for devices, as will be explained later. The ioctl
system call provides an interface that allows processes to control character devices,
but it is not applicable to regular files.! However, each device driver need not
support every system call interface. For example, the trace driver mentioned earlier
allows users to read records written by other drivers, but it does not allow users to
write it.

10.1.1 System Configuration

System configuration is the procedure by which administrators specify parameters
that are installation dependent. Some parameters specify the sizes of kernel tables,
such as the process table, inode table, and file table, and the number of buffers to
be allocated for the buffer pool. Other parameters specify device configuration,
telling the kernel which devices are included in the installation and their “address.”
For instance, a configuration may specify that a terminal board is plugged into a

1. Conversely, the fentl system call provides control of operations at the file descriptor level, not the
device level. Other implementations interpret ioctl for all file types. )
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particular siot on the hardware backplane.

There are three stages at which device configuration can be specified. First,
administrators can hard-code configuration data into files that are compiled and
linked when building the kernel code. The configuration data is typically specified
in a simple format, and a configuration program converts it into a file suitable for
compilation. Second, administrators can supply configuration information after the
system is already running; the kernel updates internal configuration tables
dynamically. Finally, self-identifying devices permit the kernel to recognize which
devices are installed. The kernel reads hardware switches to configure itself. The
details of system configuration are beyond the scope of this book, but in all cases,
the configuration procedure generates or fills in tables that form part of the code of
the kernel.

The kernel to driver interface is described by the block device switch table and
the character device switch table (Figure 10.1). -Each device type has entries in the
table that direct the kernel to the appropriate driver interfaces for the system calls.
The open and close system calls of a device file funnel through the two device
switch tables, according to the file type. The mount and umount system calls also
invoke the device open and close procedures for block devices. Read, write, and
ioctl system calls of character special files pass through the respective procedures in
the character device switch table. Read and write system calls of block devices and
of files on mounted file systems invoke the algorithms of the buffer cache, which
invoke the device strategy procedure. Some drivers invoke the strategy procedure
internally from their read and write procedures, as will be seen. The next section
explores each driver interface in greater detail.

The hardware to driver interface consists of machine-dependent control registers
or 1/0 instructions for manipulating devices and interrupt vectors: Whep a device
interrupt occurs, the system identifies the interrupting device and calls the
appropriate interrupt handler. Obviously, software devices such as the kernel
profiler driver (Chapter 8) do not have a hardware interface, but other interrupt
handlers may call a “software interrupt handler” directly. For example, the clock
interrupt handler calls the kernel profiler interrupt handler.

Administrators set up device special files with the mknod command, supplying
file type (block or character) and major and minor numbers. The mknod command
invokes the mknod system call to create the device file. For example, in the
command line

mknod /dev/ttyl3 ¢ 2 13

“/dev/tty13” is the file name of the device, ¢ specifies that it is a character special
file (b specifies a block special file), 2 is the major number, and 13 is the minor
number. The major number indicates a device type that corresponds to the
appropriate entry in the block or character device switch tables, and the minor
number indicates a unit of the device. If a process opens the block special file
*“/dev/dsk1” and its major number is 0, the kernel calls the routine gdopen in entry
0 of the block device switch table (Figure 10.2); if a process reads the character
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File Subsystem

open close

read write
mount unmount

open close read write ioctl

buffer cache
calls

l

Character Device Switch Table Block Device Switch Table

open close read write ioctl| Driver open close strategy

Driver Entry Driver
device interrupt handler Points device interrupt handler
Interrupt Vector Interrupt Vector

Device Interrupts

Figure 10.1. Driver Entry Points

special file “/dev/mem” and its major number is 3, the kerne! calls the routine
mmread in entry 3 of the character device switch table. The routine nulldev is an
“empty” routine, used when there is no need for a particular driver function.
Many peripheral devices can be associated with a major device number; the minor
device number distinguishes them from each other. Device special files do not have
to be created every time the system is booted; they need be changed only if the
configuration changes, such as when adding devices to an installation.

10.1.2 System Calls and the Driver Interface

This section describes the interface between the kernel and device drivers. For
system calls that use file descriptors, the kernel follows pointers from the user file
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block device switch table
entry open close strategy
0 gdopen | gdclose | gdstrategy
1 gtopen | gtclose | gtstrategy

character device switch table

entry open close read write ioctl
0 conopen | conclose | conread | conwrite | conioctl
1 dzbopen | dzbclose | dzbread | dzbwrite | dzbioctl
2 syopen nulldev syread sywrite syioctl

3 nulldev nulldev | mmread | mmwrite | nodev
4 gdopen gdclose gdread gdwrite nodev

5 gtopen gtclose gtread gtwrite nodev

Figure 10.2. Sample Block and Character Device Switch Tables

descriptor to the kernel file table and inode, where it examines the file type and
accesses the block or character device switch table, as appropriate. It extracts the
major and minor numbers from the inode, uses the major number as an index into
the appropriate table, and calls the driver function according to the system call
being made, passing the minor number as a parameter. An important difference
between system calls for devices and regular files is that the inode of a special file is
not locked while the kernel executes the driver. Drivers frequently sleep, waiting
for hardware connections or for the arrival of data, so the kernel cannot determine
how long a process will sleep. If the inode was locked, other processes that access
the inode (via the stat system call, for example) would sleep indefinitely because
another process is asleep in the driver.

The device driver interprets the parameters of the system call as appropriate for
the device. A driver maintains data structures that describe the state of each unit
that it controls; driver functions and interrupt handlers execute according to the
state of the driver and the action being done (for example, data being input or
output). Each interface will now be described in greater detail.

10.1.2.1 Open

The kernel follows the same procedure for opening a device as it does for opening
regular files (see Section 5.1), allocating an in-core inode, incrementing its
reference count, and assigning a file table entry and user file descriptor. The kernel
eventually returns the user file descriptor to the calling process, so that opening a
device looks like opening a regular file. However, it invokes the device-specific
open procedure before returning to user mode, (Figure 10.3). For a block device, it
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algorithm open /* for device drivers */
input: pathname ’
openmode
output: file descriptor
{
convert pathname to inode, increment inode reference count,
allocate entry in file table, user file descriptor,
as in open of regular file;

get major, minor number from inode;

save context (algorithm setjmp) in case of long jump from driver;

if (block device)
{
use major number as index to block device switch table;
call driver open procedure for index:
pass minor number, open modes;

else
{
use major number as index to character device switch table;
call driver open procedure for index:
pass minor number, open modes:;
}

if (open fails in driver)
decrement file table, inode counts;

Figure 10.3. Algorithm for Opening a Device

invokes the open procedure encoded in the block device switch table, and for a
character device, it invokes the open procedure in the character device switch table.
If a device is both a block and a character device, the kernel will invoke the
appropriate open procedure depending on the particular device file the user opened:
The two open procedures may even be identical, depending on the driver.

The device-specific open procedure establishes a connection between the calling
process and the opened device and initializes private driver data structures. For a
terminal, for example, the open procedure may put the process to sleep until the
machine detects a (hardware) carrier signal indicating that a user is trying to log
in. It then initializes driver data structures according to appropriate terminal
settings (such as the terminal baud rate). For software devices such as system
memory, the open procedure may have no initialization to do.
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If a process must sleep for some external reason when opening a device, it is
possible that the event that should awaken the process from its sleep may never
occur. For example, if no user ever logs in to a particular terminal, the getty
process that opened the terminal (Section 7.9) sleeps until a user attempts to log
in, potentially a long time. The kernel must be able to awaken the process from its
sleep and cancel the open call on receipt of a signal: It must reset the inode, file
table entry, and user file descriptor that it had allocated before entry into the
driver, because the open fails. Hence, the kernel saves the process context using
algorithm setjmp (Section 6.4.4) before entering the device-specific open routine; if
the process awakens from its sleep because of a signal, the kernel restores the
process context to its state before entering the driver using algorithm longjmp
(Section 6.4.4) and releases all data structures it had allocated for the open.
Similarly, the driver can catch the signal and clean up private data structures, if
necessary. The kernel also readjusts the file system data structures when the driver
encounters error conditions, such as when a user attempts to access a device that
was not configured. The open call fails in such cases.

Processes may specify various options to qualify the device open. The most
common option is “no delay,” meaning that the process will not sleep during the
open procedure if the device is not ready. The open system call returns
immediately, and the user process has no knowledge of whether. a hardware
connection was made or not. Opening a device with the “no delay” option also
affects the semantics of the read system call, as will be seen (S.ection 10.3.4).

If a device is opened many times, the kernel manipulates the user file
descriptors and the inode and file table entries as described in Chapter 5, invoking
the device specific open procedure for each open system call. The device driver can
thus count how many times a device was opened and fail the open call if the count
is inappropriate. For example, it makes sense to allow multiple processes to open a
terminal for writing so that users can exchange messages. But it does not make
sense to allow multiple processes to open a printer for writing simultaneously, since
they could overwrite each other’s data. The differences are practical rather than
implementational: ~ allowing simultaneous writing to terminals fosters
communication between users; preventing simultaneous writing to printers increases
the chance of getting readable printouts.?

10.1.2.2 Close

A process severs its connection to an open device by closing it. However, the
kernel invokes the device-specific close procedure only for the last close of the

2. In practice, printers arc usually controlled by special spooler processes, and permissions are set up so
that only the spooler can access the printer. But the analogy is still applicable.
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device, that is, only if no other processes have the device open, because the device
close procedure terminates hardware connections; clearly this must wait until no
processes are accessing the device. Because the kernel invokes the device open
procedure during every open system call but invokes the device close procedure only
once, the device driver is never sure how many processes are still using the device.
Drivers can easily put themselves out of state if not coded carefully: If they sleep
in the close procedure and another process opens the device before the close
completes, the device can be rendered useless if the combination of open and close
results in an unrecognized state.

algorithm close /* for devices */
input: file descriptor
output: none
{
do regular close algorithm (chapter 5xxx);
if (file table reference count not 0)
goto finish;
if (there is another open file and its major, minor numbers
are same as device being closed)
goto finish; /* not last close after all */
if (character device)
{
use major number to index into character device switch table;
call driver close routine: parameter minor number;

}

if (block device)

{
if (device mounted)

goto finish;

write device blocks in buffer cache to device;
use major number to index into block device switch table;
call driver close routine: parameter minor number;
invalidate device blocks still in buffer cache;

)

finish:
release inode;

" Figure 10.4. Algorithm for Closing a Device

The algorithm for closing a device is similar to the algorithm for closing a
regular file (Figure 10.4). However, before the kernel releases the inode it does
operations specific to device files.

1. Tt searches the file table to make sure that no other processes still have the
device open. It is not sufficient to rely on the file table count to indicate the
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last close of a device, because several processes may access the device via a
different file table entry. It is also not sufficient to rely on the inode table
count, because several device files may specify the same device. For example,
the results of the following /s —/ command show two character device files
(the first “c” on the line) that refer to one device, because their major and
minor numbers (9 and 1) are equal. The link count of 1 for each file implies
that there are two inodes.

CTW——wW——w— 1 root vis 9,1 Aug 6 1984  /dev/tty0l
CIW——W——wW— lroot wunix 9,1 May315:02 /dev/ftyOl

If processes open the two-files independently, they access different inodes but
the same device.

2. For a character device, the kernel invokes the device close procedure and
returns to user mode. For a block device, the kernel searches the mount table
to make sure that the device does not contain a mounted file system. If there
is a mounted file system from the block device, the kernel cannot invoke the
device close procedure, because it is not the last close of the device. Even if
the device does not contain a mounted file system, the buffer cache could still
contain blocks of data that were left over from a previously mounted file
system and never written to the device, because they were marked “delayed
write.” The kernel therefore searches the buffer cache for such blocks and
writes them to the device before invoking the device close procedure. After
closing the device, the kernel again goes through the buffer cache and
invalidates all buffers that contain blocks for the now closed device, allowing
buffers with useful data to stay in the cache longer.

3. The kernel releases the inode of the device file.

To summarize, the device close procedure severs the device connection and
reinitializes driver data structures and device hardware, so that the kernel can
reopen the device later on.

10.1.2.3 Read and Write

The kernel algorithms for read and write of a device are similar to those for a
regular file. If the process is reading or writing a character_device, the kernel
invokes the device driver read or write procedure. Although there are important
cases where the kernel transmits data directly between the user address space and
the device, device drivers may buffer data internally. For example, terminal drivers
use clists to buffer data (Section 10.3.1). In such cases, the device driver allocates
a “buffer,” copies data from user space during a write, and outputs the data from
the “buffer” to the device. The driver write procedure throttles the amount of data
being output (called flow control): If processes generate data faster than the device
can output it, the write procedure puts processes to sleep until the device can accept
more data. For a read, the device driver receives the data from the device in a
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Figure 10.5. Memory Mapped 1/O with the VAX DZ11 Controller

buffer and copies the data from the buffer to the user address specified in the
system call. '

The precise method in which a driver communicates with a device depends on
the hardware. Some machines provide memory mapped 1/0, meaning that certain
addresses in the kernel address space are not locations in physical memory but are
special registers that control particular devices. By writing control parameters to
specified registers according to hardware specifications, the driver controls the
device. For example, 1/0 controllers for the VAX-11 computer contain special
registers for recording device status (control and status registers) and for data
transmission (data buffer registers), which are configured at specific addresses in
physical memory. In particular, the VAX DZI11 terminal controller controls 8
asynchronous lines for terminal communication (see [Levy 80] for more detail on
the VAX architecture). Assume that the control and status register of a particular
DZ11 is at address 160120, the transmit data buffer register is at address 160126,
and the receive data buffer register is at address 160122 (Figure 10.5). To write a
character to terminal ““/dev/tty09”, the terminal driver writes the number 1 (1 =9
modulo 8) to a specified bit position in the control and status register and then
writes the character to the transmit data buffer register. The operation of writing
the transmit data buffer register transmits the data. The DZI1 controller sets a
done bit in the control and status register when it is ready to accept more data.
The driver can optionally set a transmit interrupt enable bit in the control and
status register, which causes the DZ11 controller to interrupt the system when it is
ready to accept more data. Reading data from the DZ11 is similar.
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Other machines have programmed I/0, meaning that the machine contains
instructions to control devices. Drivers control devices by executing the appropriate
instructions. For example, the IBM 370 computer has a Start I/O instruction to
initiate an I/O operation to a device. The method a driver uses to communicate
with peripherals is transparent to the user.

Because the interface between device drivers and the underlying hardware is
machine dependent, no standard interfaces exist at this level. For both memory-
mapped I/0 and programmed I/0, a driver can issue control sequences to a device
to set up direct memory access (DMA) between the device and memory. The
system allows bulk DMA transfer of data between the device and memory in
parallel to CPU operations, and the device interrupts the system when such a
transfer has completed. The driver sets up the virtual memory mapping so that the
correct locations in memory are used for DMA.

High-speed devices can sometimes transfer data directly between the device and
the user’s address space, without intervention of a kernel buffer. This results in
higher transfer speed because there is one less copy operation in the kernel, and the
amount of data transmitted per transfer operation is not bounded by the size of
kernel buffers. Drivers that make use of this “raw” 1/O transfer usually invoke the
block strategy interface from the character read and write procedures if they have
a block counterpart.

10.1.2.4 Strategy Interface

The kernel uses the strategy interface to transmit data between the buffer cache
and a device, although as mentioned above, the read and write procedures of
character devices sometimes use their (block counterpart) strategy procedure to
transfer data directly between the device and the user address space. The strategy
procedure may queue 1/0 jobs for a device on a work list or do more sophisticated
processing to schedule 1/O jobs. Drivers can set up data transmission for one
physical address or many, as appropriate. The kernel passes a buffer header
address to the driver strategy procedure; the header contains a list of (page)
addresses and sizes for transmission of data to or from the device. This is also how
the swapping operations discussed in Chapter 9 work. For the buffer cache, the
kernel transmits data from one data address; when swapping, the kernel transmits
data from many data addresses (pages). If data is being copied to or from the
user’s address space, the driver must lock the process (or at least, the relevant
pages) in memory until the 1/0 transfer is complete.

For example, after mounting a file system, the kernel identifies every file in the
file system by its device number and inode number. The device number is an
encoding of the device major and minor numbers. When the kernel accesses a
block from a file, it copies the device number and block number into the buffer
header, as described in Chapter 3. When the buffer cache algorithms (bread or
bwrite, for example) access the disk, they invoke the strategy procedure indicated
by the device major number. The strategy procedure uses the minor number and
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block number fields in the buffer header to identify where to find the data on the
device, and it uses the \)u‘ffcr address to identify where the data should be
transferred. Similarly, if a process accesses a block device directly (that is, the
process opens the block device and reads or writes it), it uses the buffer cache
algorithms, and the interface works as just described.

10.1.2.5 loctl

The ioctl system call is a generalization of the terminal-specific szty (set terminal
settings) and grty (get terminal settings) system calls available in earlier versions of
the UNIX system. It provides a general, catch-all entry point for device specific
commands, allowing a process to set hardware options associated with a device and
software options associated with the driver. The specific actions specified by the
ioctl call vary per device and are defined by the device driver. Programs that use’
ioct! must know what type of file they are dealing with, because they are device-
specific. This is an exception to the general rule that ‘the system does not
differentiate between different file types. Section 10.3.3 provides more detail on the
use of ioct! for terminals.
The syntax of the system call is

ioctl(fd, command, arg);

where fd is the file descriptor returned by a prior open system call, command is a
request of the driver to do a particular action, and arg is a parameter (possibly a
pointer to a structure) for the command. Commands are driver specific; hence,
each driver interprets commands according to internal specifications, and the
format of the data structure arg dependsion the command. Drivers can read the
data structure arg from user space according to predefined formats, or they can
write device settings into user address space at arg. For instance, the ioctl
interface allows users to set terminal baud rates; it allows users to rewind tapes on
a tape drive; finally, it allows network operations such as specitying virtual circuit
numbers and network addresses.

10.1.2.6 Other File System Related Calis

File system calls such as star and chmod work for devices as they do for-regular
files; they manipulate the inode without accessing the driver. Even the Iseek system
call works for devices. For example, if a process Iseeks to a particular byte offset
on a tape, the kernel updates the file table offset but does no driver-specific
operations. When the process later reads or writes, the kernel moves the file table
offset to the u area, as is done for regular files, and the device physically seeks to
the correct offset indicated in the u area. An example in Section 10.3 illustrates
this case.
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Figure 1>70.6. Device Interrupts

10.1.3 Interrupt Handlers

As previously explained (Section 6.4.1), occurrence of an interrupt causes the
kernel to execute an interrupt handler, based on the correlation of the interrupting
device and an offset in the interrupt vector table. The kernel invokes the device
specific interrupt handler, passing it the device number or other parameters to
identify the specific unit that caused the interrupt. For example, Figure 10.6 shows
two entries in an interrupt vector table for handling terminal interrupts (“ttyintr”),
each handling interrupts for 8 terminals. If device t£y09 interrupts the system, the
system calls the interrupt handler associated with the hardware position of the
interrupting device. Because many physical devices can be associated with one
interrupt vector entry, the driver must be able to resolve which device caused the
interrupt. In the figure, the two interrupt vector entries for “ttyintr” are labeled 0
and 1, implying that the system distinguishes between the two vector entries in
some way when calling the interrupt handler, such as using that number as a
parameter to the call. The interrupt handler would use that number and other
information passed by the interrupt mechanism to ascertain that device t1y09
interrupted the system and not tzy12, for example. This example is a simplification
of what happens on real systems, where several levels of controllers and their
interrupt handlers enter the picture, but it illustrates the general principles.

In summary, the device number used by the interrupt handler identifies a
hardware unit, and the minor number in the device file identifies a device for the
kernel. The device driver correlates the minor device number to the hardware unit
number.
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10.2 DISK DRIVERS

Historically, disk units on UNIX systems have been configured into sections that
contain individual file systems, allowing “the [disk] pack to be broken up into more
manageable pieces” (see [System V 84b]). For instance, if a disk contains four file
systems, an administrator may leave one unmounted, mount another “read-only,”
and mount the last two “read-write.” Even though all the file systems coexist on
one physical unit, users cannot access files in the unmounted file system using the
access methods described in Chapters 4 and 5, nor can any users write files in the
“read-only” file system. Furthermore, since each section (and hence file system)
spans contiguous tracks and cylinders of the disk, it is easier to copy entire file
systems than if they were dispersed throughout an entire disk volume.

The disk driver translates a file system address, consisting of a logical device
number and block number, to a particular sector on the disk. The driver gets the
address in one of two ways: Either the stgategy procedure uses a buffer from the
buffer pool and the buffer header contains the device and block number, or the read
and write procedures are passed the logical (minor) device number as a parameter;
they: convert the byte offset saved in the u area to the appropriate block address.
The disk driver uses the device number to identify the physical drive and particular
section to be used, maintaining internal tables to find the sector that marks the
beginning of a disk section. Finally, it adds the block number of the file system to
the start sector number to identify the sector used for the I/O transmission.

Section  Start Block  Length in Blocks
Size of block = 512 bytes
0 0 64000
1 64000 944000
2 168000 840000
3 336000 672000
4 504000 504000
5 672000 336000
6 840000 168000
7 0 1008000

Figure 10.7. Disk Sections for RP07 Disk

Historically, the sizes and lengths of disk sections have been fixed according to
the disk type. For instance, the DEC RPO07 disk is partitioned into the sections
shown in Figure 10.7. Suppose the files “/dev/dsk0”, “/dev/dsk1”, *“‘/dev/dsk2”
and “‘/dev/dsk3” correspond to sections O through 3 of an RPO7 disk and have
minor numbers O through 3. Assume the size of a logical file system block is the
same as that of a disk block. If the kernel attempts to access block 940 in the file
system contained in “/dev/dsk3”, the disk driver converts the request to access
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block 336940 (section 3 starts at block 336000; 336000 + 940 = 336940) on the .
disk.

The sizes of disk sections vary, and administrators configure file systems in
sections of the appropriate size: Large file systems go into large sections, and so
on. Sections may overlap on disk. For example, Sections 0 and 1 in the RP07 disk
are disjoint, but together they cover blocks 0 to 1008000, the entire disk. Section 7
also covers the entire disk. The overlap of sections does not matter, provided that
the file systems contained in the sections are configured such that they do not
overlap. It is advantageous to have one section include the entire disk, since the
entire volume can thus be quickly copied.

The use of fixed sections restricts the flexibility of disk configuration. The
hard-coded knowledge of disk sections should not be put into the disk driver but
should be placed in a configurable volume table of contents on the disk. However,
it is difficult to find a generic position on all disks for the volume table of contents
and retain compatibility with previous versions of the system. Current
implementations of System V expect the boot block of the first file system on a disk
to occupy the first sector of the volume, although that is the most logical place for a
volume table of contents. Nevertheless, the disk driver could contain hard-coded
information on where the volume table of contents is stored for that particular disk,
allowing variable sized disk sections.

Because of the high level of disk traffic typical of UNIX systems, the disk driver
must maximize data throughput to get the best system performance. Most modern
disk controllers take care of disk job scheduling, positioning the disk arm, and
transferring data between the disk and the CPU; otherwise, the disk driver must do
these tasks.

Utility programs can use either ,the raw or block interface to access disk data
directly, bypassing the regular file $ystem access method investigated in Chapters 4
and 5. Two important programs that deal directly with the disk are mkfs and fsck.
Mkfs formats a disk section for a UNIX file system, creating a super block, inode
list, linked list of free disk blocks, and a root directory on the new file system. Fsck
checks the consistency of an existing file system and corrects errors, as presented in
Chapter 5.

Consider the program in Figure 10.8 and the files *“/dev/dsk15” and
“/dev/rdsk15”, anl suppose the Is command prints the following information.

Is =1 /dev/dsk}S /dev/rdskl5

br-------- 2root root 0,21 Feb 121540 /dev/dskl5
crw-rw---- 2root root 7,21 Mar 709:29 /dev/rdskl5

It shows that “/dev/dsk15” is a block device owned by “root,” and only “root” can
read it directly. Its major number is 0, and its minor number is 21. The file
“/dev/rdsk15” is a character device owned by “root” but allows read and write
permission for the owner and group (both root here). Its major number is 7, and
its minor number is 21. A process opening the files gains access to the device via
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#include "fcntl.h"
main()

{

char buf1[4096], buf2[4096];
int fd1, fd2, i;

if (((fd1 = open(*/dev/dsk5", O_RDONLY)) == —1) ||
((fd2 = open(*/dev/rdsk5", O_RDONLY)) == —1))
{

printf(*failure on open\n");
exit();

}

Iseek (fd1, 8192L, 0);
Iseek (fd2, 8192L, 0);

if ((read(fd1, bufl, sizeof(buf1)) == —1) || (read(fd2, buf2, sizeof(buf2)) == —1))
{

printf(*failure on read\n"); -

exit();

}

for (i = 0; i < sizeof(bufl); i++)
if (buf1[i] '= buf2li])
{

printf("different at offset %d\n", i);
exit();
}

printf("reads match\n");

3.

Figure 10.8. Reading Disk Data Using Block and Raw Interface

the block device switch table and the character device switch table, respectively,
and the minor number 21 informs the driver which disk section is being accessed —
for example, physical drive 2, section 1. Because the minor numbers are identical
for each file, both refer to the same disk section, assuming this is one device.? Thus,
a process executing the program opens the same driver twice (through different
interfaces), Iseeks to byte offset 8192 in the devices, and reads data from that

There is no way to verify that a character driver and a block driver refer to the same device, except
by ¢xamination of the system configuration tables and the driver code.
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positior.. The results of the read calls should be identical, assuming no other file
system activity.

Programs that read and write the disk directly are dangerous because they can
read or write sensitive data, jeopardizing system security. Administrators must
protect the block and raw interfaces by putting the appropriate permissions on the
disk device files. For example, the disk files “/dev/dsk15” and “/dev/rdsk15”
should be owned by “root,” and their permissions, should allow “root” to read the
file but should not allow any other users to read or writé.

Programs that read and write the disk directly can also destroy the consistency
of file system data. The file system algorithms explained in Chapters 3, 4, and 5
coordinate disk 1/0 operations to maintain a consistent view of disk data structures,
including linked lists of free disk blocks and pointers from inodes to direct and
indirect data blocks. Processes that access the disk directly bypass these
algorithms. Even if they are carefully encoded, there is still a consistency problem
if they run while other file system activity is going on. For this reason, Jfsck should
not be run on an active file system.

The difference between the two disk interfaces is whether they deal with the
buffer cache. When accessing the block device interface, the kernel follows the
same algorithm as for regular files, except that after converting the logical byte
offset into a logical block offset (recall algorithm bmap in Chapter 4), it treats the
logical block offset as a physical block number in the file system. It then accesses
the data via the buffer cache and, ultimately, the driver strategy interface.
However, when accessing the disk via the raw interface, the kernel does not convert
the byte offset into the file but passes the offset immediately to the driver via the u
area. The driver read or write routine converts the byte offset to a block offset and
copies the data directly to the user address space, bypassing kernel buffers.

Thus, if one process writes a block device and a second process then reads a
raw device at the same address, the second process may not read the data that the
first process had written, because the data may still be in the buffer cache and not
on disk. However, if the second process had read the block device, it would
automatically pick up the new data, as it exists in the buffer cache.

Use of the raw interface may also introduce strange behavior. If a process
reads or writes a raw device in units smaller than the block size, for example
results are driver-dependent. For instance, when issuing 1-byte writes to a tape
drive, each byte may appear in different tape blocks.

The advantage of using the raw interface is speed, assuming there is no
advantage to caching data for later access. Processes accessing block devices
transfer blocks of data whose size is constrained by the file system logical block
size. For example, if a file system has a logical block size of 1K bytes, at most 1K
bytes are transferred per /0 operation. However, processes accessing the disk as a
raw device can transfer many disk blocks during a disk operation, subject to the
capabilities of the disk controller. Functionally, the process sees the same result,
but the raw interface may be much faster. In Figure 10.8 for example, when a
process reads 4096 bytes using the block interface for a file system with 1K bytes
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per block, the kernel loops internally four times and accesses the disk during cach
iteration before returning from the system call, but when it reads the raw interface,
the driver may satisfy the read with one disk operation. Furthermore, use of the
block interface entails an extra copy of data between user address space and kernel
buffers, which is avoided in the raw interface.

10.3 TERMINAL DRIVERS

Terminal drivers have the same function as other drivers: to control the
transmission of data to and from terminals. However, terminals are special,
because they are the user’s interface to the system. To accommodate interactive
use of the UNIX system, terminal drivers contain an internal interface to line
discipline modules, which interpret input and output. In canonical mode, the line
discipline converts raw data sequences typed at the keyboard to a canonical form
(what the user really meant) before sending the data to a receiving process; the line
discipline also converts raw output sequences written by a process to a format that
the user expects. In raw mode, the line discipline passes data between processes
and the terminal without such conversions.

For example, programmers are notoriously fast but error-prone typists.
Terminals provide an “erase” key (or such a key can be so giesignated) such that
the user can logically erase part of the typed sequence and enter corrections. The
terminal sends the entire sequence to the machine, including the erase characters.*
In canonical mode, the line discipline buffers the data into lines (the sequence of
characters until a carriage-return® character) and processes erase characters
internally before sending the reviséd sequence to the reading process.

The functions of a line discipline are

e to parse input strings into lines;

e to process erase characters;

e to process a “kill” character that invalidates all characters typed so far on the
current line;

¢ to echo (write) received characters to the terminal;

o to expand output such as tab characters to a sequence of blank spaces;

e to generate signals to processes for terminal hangups, line breaks, or in response
to a user hitting the delete key;

¢ to allow a raw mode that does not interpret special characters such as erase, kill
or carriage return.

4. This section will assume the use of dumb terminals, which transmit all characters typed by the user
without processing them.

S. This chapter will use the generic term “carriage return” for “carriage return” and “new-line”
characters.
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The support of raw mode implies the use of an asynchronous terminal, because
processes can read characters as they are typed instead of waiting until a user hits
a carriage return or “enter” key. '

Ritchie notes that the original terminal line disciplines used during system
development in the early 1970s were in the shell and editor programs, not in the
kernel (see page 1580 of [Ritchie 84]). However, because their function is needed
by many programs, their proper place is in the kernel. Although the line discipline
performs a function that places it logically between the terminal driver and the rest
of the kernel, the kernel does not invoke the line discipline directly but only through
the terminal driver. Figure 10.9 shows the logical flow of data through the
terminal driver and line discipline and the corresponding flow of control through the
terminal driver. Users can specify what line discipline should be used via an ioctl
system call, but it is difficult to implement a scheme such that one device uses
several line disciplines simultaneously, where each line discipline module
successively calls the next module to process the data in turn.

Data Flow : Control Flow
Process read/write Process read/write
-y b v A
output - | Line discipline " input Terminal driver read/write
Terminal driver Line discipline

v A

Driver input/output

!

Device input/output

Figure 10.9. Call Sequence and Data Flow through Line Discipline
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Figure 10.10. A Cblock

10.3.1 Clists

Line disciplines manipulate data on clists. A clist, or character list, is a variable-
length linked list of cblocks with a count of the number of characters on the list.
A cblock contains a pointer to the next cblock on the linked list, a small character
array to contain data, and a set of offsets indicating the position of the valid data in
the cblock (Figure 10.10). The start offset indicates the first location of valid data
in the array, and the end offset indicates the first location of nonvalid data.

The kernel maintains a linked list of free cblocks and has six operations on clists
and cblocks.

1. It has an operation to assign a cblock from the free list to a driver.
It also has an operation to return a cblock to the free list.

3. The kernel can retrieve the first character from a clist: It removes the first
character from the first cblock on the clist and adjusts the clist character
count and the indices into the cblock so that subsequent operations will not
retrieve the same character. If a retrieval operation consumes the last
character of a cblock, the kernel places the empty cblock on the free list and
adjusts the clist pointers. If a clist contains no characters when a retrieval
operation is done, the kernel returns the null character.

4. The kernel can place a character onto the end of a clist by finding the last
cblock on the clist, putting the character onto it, and adjusting the offset
values. If the cblock is full, the kernel allocates a new cblock, links it onto
the end of the clist, and places the character into the new cblock.

5. The Kernel can remove a group of characters from the beginning of a clist one
cblock at a time, the operation being equivalent to removing all the characters
in the cblock one at a time.

6. The kernel can place a cblock of characters onto the end of a clist.

Clists provide a simple buffer mechanism, useful for the small volume of data
transmission typical of slow devices such as terminals. They allow manipulation of
data one character at a time or in groups of cblocks. For example, Figure 10.11
depicts the removal of characters from a clist; the kernel removes one character at
a time from the fitst cblock on the clist (Figure 10.11a—c¢) until there are no more
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Figure 10.11. Removing Characters from a Clist
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characters in the cblock (Figure 10.11d); then, it adjusts the clist pointer to point
to the next cblock, which becomes the first one on the linked list. Similarly, Figure
10.12 depicts how the kernel puts characters onto a clist; assuming a cblock holds
up to 8 characters, the kernel links a new cblock onto the end of the linked list
(Figure 10.12d).

10.3.2 The Terminal Driver in Canonical Mode

The data structures for terminal drivers have three clists associated with them: a
clist to store data for output to the terminal, a clist to store “raw” input data
provided by the terminal interrupt handler as the user tvped it in, and a clist to
store “cooked” input data, after the line discipline converts special characters in the
raw clist, such as the erase and kill characters.

algorithm terminal_write

while (more data to be copied from user space)
{
if (tty flooded with output data)
{
start write operation to hardware with data
on output clist;
sleep (event: tty can accept more data);
continue; /* back to while loop */
}
copy cblock size of data from user space to output clist:
line discipline converts tab characters, etc;

}

start write operation to hardware with data on output clist;

Figure 10.13. Algorithm for Writing Data to a Terminal

When a process writes a terminal (Figure 10.13), the terminal driver invokes
the line discipline. The line discipline loops, reading output characters from user
address space and placing them onto the output clist, until it exhausts the data.
The line discipline processes output characters, expanding tab characters to a series
of space characters, for example. If the number of characters on the output clist
becomes greater than a high-water mark, the line discipline calls driver procedures
to transmit the data on the output clist to the terminal and puts the writing process
to sleep. When the amount of data on the output clist drops below a low-water
mark, the interrupt handler awakens all processes asleep on the event the terminal
can accept more data. The line discipline finishes its loop, having copied all the
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output data from user space to the output clist, and calls driver procedures to
transmit the data to the terminal, as described earlier.

If multiple processes write to a terminal, they follow the given procedure
independently. The output could be garbled; that is, data written by the processes
may be interleaved on the terminal. This could happen because a process may
write the terminal using several write system calls. The kernel could switch context
while the process is in user mode between successive write system calls, and newly
scheduled processes could write the terminal while the original process sleeps.
Output data could also be garbled at a terminal because a writing process may
sleep in the middle of a write system call while waiting for previous output data to
drain from the system. The kernel could schedule other processes that write the
terminal before the original process is rescheduled. Because of this case, the kernel
does not guarantee that the contents of the data buffer to be output by a write
system call appear contiguously on the terminal.

char forml] = “this is a sample output string from child ”;

main()

{
char output{128];
int i;

for (=0: i <18; i++)
{

switch (fork()

{

case ~1: /* error ——— hit max procs */
exit();

default: /* parent process */
break;

case 0: /* child process */

/* format output string in variable output */
sprintf(output, “%s%d\n%s%d\n”, form, i, form, 1);
for (;;)

write(1, output, sizeof (output));

Figure 10.14. Flooding Standard Output with Data

Consider the program in Figure 10.14. The parent process creates up to 18
children; each child process formats a string (via the library function sprintf) in the
array output, which includes a message and the value of i at the time of the fork
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and then goes into a loop, writing the string to its standard output file during each
iteration. If the standard output is the terminal, the terminal driver regulates the
flow of data to the terminal. The output string is more than 64 characters long, too
large to fit into a cblock (64 bytes long) in System V implementations. Hence, the
terminal driver needs more than one cblock for each write call, and output could
become garbled. For example, the following lines were part of the output produced
when running the program on an AT&T 3B20 computer:

this is a sample output string from child 1
this is a sample outthis is a sample output string from child 0

Reading data from a terminal in canonical mode is a more complex operation.
The read system call specifies the number of bytes the process wants to read, but
the line discipline satisfies the read on receipt of a carriage return even though the
character count is not satisfied. This is practical, since it is impossible for a process
to predict how many characters the user will enter at the keyboard, and it does not
make sense to wait for the user to type a large numtzr of characters. For example,
users type command lines to the shell and expect the shell to respond to the
command on receipt of a carriage return character. It makes no difference’ whether
the commands are simple, such as “date” or “who,” or whether they are more
complicated command sequences such as

pic file* | tbl | eqn | troff —mm —Taps | apsend

The terminal driver and line discipline know nothing about shell syntax, and rightly
50, because other programs that read terminals (such as editors) have different
command syntax. Hence, the line discipline satisfies read calls on receipt of a
carriage return.

Figure 10.15 shows the algorithm for reading a terminal. Assume the terminal
is in canonical mode; Section 10.3.3 will cover the case of raw mode. If no data is
currently on either input clist, the reading process sleeps until the arrival of a line
of data. When data is entered, the terminal interrupt handler invokes the line
discipline “interrupt handler,” which places the data on the raw clist for input to
reading processes and on the output clist for echoing back to the terminal. If the
input string contains a carriage return, the interrupt handler awakens all sleeping
reader processes. When a reading process runs, the driver removes characters from
the raw clist, does erase and kill character processing, and places the characters on
the canonical clist. It then copies characters to user address space until the
carriage return character or until it satisfies the count in the read system call,
whichever number is smalier. However, a process may find that the data for which
it woke up no longer exists: Other processes may read the terminal and remove the
data from the raw clist before the first process is rescheduled. This is similar to
what happens when multiple processes read data from a pipe.

Character processing in the input and output direction is asymmetric, evidenced
by the two input clists and the one output clist. The line discipline outputs data
from user space, processes it, and places it on the output clist. To be symmetric,
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algorithm terminal_read

{

if (no data on canonical clist)

{

while (no data on raw clist)

{
if (tty opened with no delay option)
return;
if (tty in raw mode based on timer and timer not active)
arrange for timer wakeup (callout table);
sleep (event: data arrives from terminal);
}

/* there is data on raw clist */
if (tty in raw mode)
copy all data from raw clist to canonical clist;

else /* tty is in canonical mode */
{
while (characters on raw clist)
{
copy one character at a time from raw clist
to canonical clist:
do erase, kill processing;
if (char is carriage return or end—~of—file)
break; /* out of while loop */
}

}

while (characters on canonical list and read count not satisfied)
copy from cblocks on canonical list to user address space;

Figure 10.15. Algorithm for Reading a Terminal
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there should be only one input clist. However, this would require the interrupt
handler to process erase and kill characters, making it more complex and time
consuming, and blocking out other interrupts at a critical time. Use or two input
clists means that the interrupt handler can simply dump characters onto the raw
clist and wake up reading processes, which properly incur the expense of processing
input data. Nevertheless, the interrupt handler puts input characters immediately
on the output clist, so that the user experiences minimal delay in seeing typed
characters on the terminal. '

Figure 10.16 shows a program where a process creates many child processes
that read their standard input file, contending for terminal data. Terminal input is
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char input[256);
main()
{
register int i;
for i=0; i<18; i++)
{
switch (fork())
{
case —1: /* error */
printf(“error cannot fork\n™);
exit();
default: /* parent process */
break;
case 0: /* child process */
for (;;)
{
read(0, input, 256); /* read line */
printf(“%d read %s\n”, i, input);
)
}
)
)

Figure 10.16. Contending for Terminal Input Data

usually too slow to satisfy all the reading processes, so the processes will spend
most of their time sleeping in the terminal read algorithm, waiting for input data.
When a user enters a line of data, the terminal interrupt handler awakens all the
reading processes; since they slept at the same priority level, they are eligible to run
at the same priority. The user cannot predict which process runs and reads the line
of data; the successful process prints the value of i at the time it was spawned. All
other processes will eventually be scheduled to run, but they will probably find no
input data on the input clists and go back to sleep. The entire procedure is
repeated for every input line; it is impossible to guarantee that one process does not
hog all the input data.

It is inherently ambiguous to allow multiple readers of a terminal, but the
kernel copes with situation as best as it can. On the other hand, the kernel must
allow multiple processes to read a terminal, otherwise processes spawned by the
shell that read standard input would never work, because the shell still accesses
standard input, too. In short, processes must synchronize terminal access at user
level.
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When the user types an “end of file” character (ASCII control-d), the ling
discipline satisfies terminal reads of the input string up to, but not including, the
end of file character. It returns no data (return value 0) for the read system call
that encounters only the end of file on the clists; the calling process is responsible
for recognizing that it has read the end of file and that it should no longer read the
terminal. Referring to the code examples for the shell in Chapter 7, the shell loop
terminates when a user types control-d: The read call returns 0, and the shell
exits.

This section has considered the case of dumb terminal hardware, which
transmits data to the machine one character at a time, precisely as the user types
it. Intelligent terminals cook their input in the peripheral, freeing the CPU for
other work. The structure of their terminal drivers resembles that of dumb
terminal drivers, although the functions of the line discipline vary according to the
capabilities of the peripherals.

10.3.3 The Terminal Driver in Raw Mode

Users set terminal parameters such as erase and kill characters and retrieve the
values of current settings with the ioct/ system call. Similarly, they control whether
the terminal echoes its input, set the terminal baud rate (the rate of bit transfers),
flush inptt and output character queues, or manually start up or stop character
output. The terminal driver data structure saves various control settings (see
[SVID 85] page 281), and the line discipline receives the parameters of the ioct!
call and sets or gets the relevant fields in the terminal data structure. When a
process sets terminal parameters, it does so for all processes using the terminal.
The terminal settings are not automatically reset when the process that changed the
settings exits. ’

Processes can also put the terrhinal mto raw mode, where the line discipline
transmits characters exactly as the user typed them: No input processing is done at
all. Still, the kernel must know when to satisfy user read calls, since the carriage
return is treated as an ordinary input character. It satisfies read system calls after
a minimum number of characters are input at the terminal, or after waiting a fixed
time from the receipt of any characters from the terminal. In the latter case, the
kernel times the entry of characters from the terminal by placing entries into the
callout table (Chapter 8). Both criteria (minimum number of characters and fixed
time) are set by an, ioctl: call. When the particular criterion is met, the line
discipline interrupt handler awakens all sleeping processes. The driver moves all
characters from the raw clist to the canonical clist and satisfies the process read
.request, following the same algorithm as for the canonical case. Rdw mode is
particularly important for screen oriented applications, such as the screen editor vi,
which has many commands that do not terminate with a carriage return. For
example, the command dw deletes the word at the current cursor position.

Figure 10.17 shows a program that does an ioct! to save the current terminal
settings of file descriptor 0, the standard input file descriptor. The ioct/ command
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#include <signal.h>
#include <termio.h>
struct termio savetty;
main()

{
extern sigcatch();
struct termio newtty;
int nrd;
char bufl32];
signal (SIGINT, sigcatch);
if Gioctl(0, TCGETA, &savetty) == —1)

{

printf(“ioctl failed: not a tty\n™);

exitQ;
}
newtty = savetty;
newtty.c_lflag &= "ICANON; /* turn off canonical mode */
newtty.c_iflag &= "ECHO,; /* turn off character echo */
newtty.c_cc[VMIN] = 5; /* minimum 5 chars */

newtty.c_ cclVTIME] = 100; /* 10 sec interval */
if (ioctl(0, TCSETAF, &newtty) == —1)

{
printf(“cannot put tty into raw mode\n™);
exitQ;
)
for ;)
{
nrd = read (0, buf, sizeof (buf));
buflnrd] = 0;
printf(“‘read %d chars '%s\n", nrd, buf);
)
sigcatch()

{
ioctl(0, TCSETAF, &savet(y)
exitQ;

Figure 10.17. Raw Mode — Reading 5-Character Bursts

TCGETA instructs the driver to retrieve the settings and save them in the structure
savetty in the user’s address space. This command is commonly used to determine
if a file is a terminal or not, because it does not change anything in the system If
it fails, processes assume the file is not a terminal. Here, the process does a second
ioctl call to put the terminal into raw mode: It turns off character echo and
arranges to satisfy terminal reads when at least 5 characters are received from the
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terminal or when any number of characters are received and about 10 seconds
elapse since the first was received. When it receives an interrupt signal, the process
resets the original terminal options and terminates.

#include <fentl.h>

main()
{
register int i, n;
int fd;
char buf(256];

/* open terminal read—only with no—delay option */
if ((fd = open(*‘/dev/tty”, O_RDONLY | O_ NDELAY)) == —1)
exit();

n=1;
for (;;) /* for ever */
{
for i=0; i<mn; i++)

if (read(fd, buf, sizeof (buf)) > 0)

(
printf(“read at n %d\n”, n);
| n——;
)
else /* no data read; returns due to no—delay */
n++;

Figure 10.18. Polling a Terminal

10.3.4 Terminal Polling

It is sometimes convenient to poll a device, that is, to read it if there is data present
but to continue regular processing otherwise. The program in Figure 10.18
illustrates this case, By opening the terminal with the “no delay” option,
subsequent reads will not sleep if there is no data present but will return
immediately (refer to algorithm terminal_read, Figure 10.15). Such a method also
works & a, process is monitoring many devices: it can open each device “no delay”
and' poll a]l of them, waiting for input from any of them. However, this method
wastes proéessing power.
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The BSD systein has a select system call that allows device polling. The syntax
of the call is

select(nfds, rfds, wfds, efds, timeout)

where nfds gives the number of file descriptors being selected, and rfds, wfds and
efds point to bit masks that “select” open file descriptors. That is, the bit ] << fd
(1 shifted left by the value of the file descriptor) is set if a user wants to select that
file descriptor. Timeout indicates how long select should sleep, waiting for data to
arrive, for example; if data arrives for any file descriptors and the timeout value has
not expired, select returns, indicating in the bit masks which file descriptors were
selected. For instance, if a user wished to sleep until receiving input on file
descriptors 0, 1 or 2, rfds would point to the bit mask 7; when select returns, the
bit mask would be overwritten with a mask indicating which file descriptors had
data ready. The bit mask wfds does a similar function for write file descriptors,
and the bit mask efds indicates- when exceptional conditions exist for particular file
descriptors, useful in networking.

10.3.5 Establishment of a Control Terminal

The control terminal is the terminal on which a user logs into the system, and it
controls processes that the user initiates from the terminal. When a process opens
a terminal, the terminal driver opens the line discipline. If the process is a process
group leader as the result of a prior setpgrp system call and if the process does not
have an associated control terminal, the line discipline makes the opened terminal
the control terminal. It stores the major and minor device number of the terminal
device file in the u area, and it stores the process group number of the opening
process in the terminal driver data structure. The opening process is the control
process, typically the login shell, as will be seen later.

The control terminal plays an important role in handling signals. When a user
presses the delete, break, rubout, or quit keys, the interrupt handler invokes the line
discipline, which sends the appropriate signal to all processes ir: the control process
group. Similarly, if the user hangs up, the terminal interrupt handler receives a
hangup indication from the hardware, and the line discipline sends a hangup signal
to all processes in the process group. In this way, all processes initiated at a
particular terminal receive the hangup signal; the default reaction of most processes
is to exit on receipt of the signal; this is how stray processes are killed when a user
suddenly shuts off a terminal. After ).ending the hangup signal, the terminal
interrupt handler disassociates the terrhinal from the process group so that
processes in the process group can no longer receive signals originating at the
terminal.
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10.3.6 Indiro;ct» Terminal Driver

Processes ‘frequently have a need to read or write data directly to the control
terminal, even though the standard input and output may have been redirected to
other files. For example, a shell script can send urgent messages directly to the
terminal, although its standard output and standard error files may have been
redirected elsewhere. UNIX systems provide “indirect” terminal access via the
device file ““/dev/tty”, which designates the control terminal for every process that
has one. Users logged onto separate terminals can access ‘“/dev/tty”, but they
access different terminals.

There are two common implementations for the kernel to find the control
terminal from the file name ‘“/dev/tty”. First, the kernel can define a special
device number for the indirect terminal file with a special entry in the character
device switch table. When invoking the indirect terminal, the driver for the
indirect terminal gets the major and minor number of the control terminal from the
u area and invokes the real terminal driver through the character device switch
table. The second implementation commonly used to find the control terminal from
the name “/dev/tty” tests if the major number is that of the indirect terminal
before calling the driver open routine. If so, it releases the inode for “/dev/tty”,
allocates the inode for the control terminal, resets the file table entry to point to the
control terminal inode, and calls the open routine of the terminal driver. The file
descriptor returned when opening ““/dev/tty” refers directly to the control terminal
and its regular driver.

10.3.7 Logging In

As described in Chapter 7, process 1, init, executes an infinite loop, reading the file
“/etc/inittab” for instructions about what to do when entering system states such as
“single user” or “multi-user.” In multi-user state, a primary responsibility of init is
to allqw users to log into terminals (Figure 10.19). It spawns processes called gerty
(for get terminal or get “tty”) and keeps track of which getty process opens which
terminal; each getty process resets its process group using the setpgrp system call,
opens a particular terminal line, and usually sleeps in the open until the machine
senses a hardware connection for the terminal. When the open returns, getty execs
the login program, which requires users to identify themselves by login name and
password. If the user logs in successfully, login finally execs the shell, and the user
starts working. This invocation of the shell is called the login shell. The shell
process has the same process ID as the original getty process, and the login shell is
therefore a process group leader. If a user does not log in successfully, login exits
after a suitable time limit, closing the opened terminal line, and init spawns another
* getty for the line. Init pauses until it receives a death of child signal. On waking
up, it finds out if the zombie process had been a login shell and, if so, spawns
another getty process to open the terminal in place of the one that died.
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algorithm login /* procedure for logging in */

getty process executes:
set process group (setpgrp system call);
open tty line; /* sleeps until opened */
if (open successful)
{
exec login program:
prompt for user name;
turn off echo, prompt for password;
if (successful) /* matches password in /etc/passwd */
{
put tty in canonical mode (ioctl);
exec shell;
)
else
count login attempts, try again up to a point;

Figure 10.19. Algorithm for Logging In

10.4 STREAMS

The scheme for implementation of device drivers, though adequate, suffers from
some drawbacks, which have become apparent over the years. Different drivers
tend to duplicate functionality, particularly drivers that implement network
protocols, which typically.include a device-control portion and a protocol portion.
Although the protocol pertion should be common for all network devices, this has
not been the case in practice, because the kernel did not provide adequate
mechanisms for common use. For example, clists wolld be useful for their
buffering capability, but they are expensive because of the character-by-character
manipulation. Attempts to bypass this mechanism for greater performance cause
the modularity of the I/O subsystem to break down. The lack of commonality at
the driver level percolates up to the user command level, where several commands
may accomplish common logjcal functions but over different media. Another
drawback of the driver scheme is that network protocols require a line discipline-
like capability, where each discipline implements one part of a protocol and the
component parts can be combined in a flexible manner. However, it is difficult to
stack conventional line disciplines together. '

Ritchie has recently implemented a scheme called streams to provide greater
modularity and flexibility for the I/0 subsystem. The description here is based on
his work [Ritchie 84b], although the implementation in System V differs slightly.
A stream is a full-duplex connection between a process and a device driver. It
consists of a set of linearly linked queue pairs, one member of each pair for input
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and the other for output. When a process writes data to a stream, the kernel sends
the data down the output queues; when a device driver receives input data, it sends
the data up the input queues to a reading process. The queues pass messages to
neighboring queues according to a well-defined interface. Each queue pair is
associated with an instance of a kernel module, such as a driver, line discipline, or
protocol, and the modules manipulate data passed through its queues.

Each queue is a data structure that contains the following elements:

* An open procedure, called during an open system call

® A close procedure, called during a close system call

e A “put” procedure, called to pass a message into the queue

e A “service” procedure, called when a queue is scheduled to execute

e A pointer to the next queue in the stream

e A pointer to a list of messages awaiting service

e A pointer to a private data structure that maintains the state of the queue

e Flags and high- and low-water marks, used for flow control, scheduling, and
maintaining the queue state

The kernel allocates queue pairs, which are adjacent in memory; hence, a queue
can easily find the other member of the pair.

Inode of
device file

Output | Input
queue queue

Stream Head

..-a queue pair

Output Input
queue queue

Driver

Figure 10.20. A Stream after Open

A device with a streams driver is a character device; it has a special field in the
character device switch table that points to a streams initialization structure,
containing the addresses of routines and high- and low-water marks mentioned
above. When the kernel executes the open system call and discovers that the device
file is character special, it examines the new field in the charactér"dcvice switch
table. If there is no entry there, the driver is not a streams driver, and the kérnel
follows the usual procedure for character devices. However, for the first open of a
streams driver, the kernel allocates two pairs of queues, one for the stream-head
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and the other for the driver. The stream-head module is identical for all instances
of open streams: It has generic put and service procedures and is the interface to
higher-level kernel modules that implement the read, write, and ioctl system calls.
The kernel initializes the driver queue structure, assigning queue pointers and
copying addresses of driver routines from a per-driver initialization structure, and
invokes the driver open procedure. The driver open procedure does the usual
initialization but also saves information to recall the queue with which it is
associated. Finally, the kernel assigns a special pointer in the in-core inode to
indicate the stream-head (Figure 10.20). When another process opens the device,
the kernel finds the previously allocated stream via the inode pointer and invokes
the open procedure of all modules on the stream.

Modules communicate by passing messages to neighboring modules on a stream.
A message consists of a linked list of message block headers; each block header
points to the start and end location of the block’s data. There are two types of
messages — centrol and data — identified by a type indicator in the message
header. Control messages may result from ioct! system calls or from special
conditions, such as a terminal hang-up, and data messages may result from write
system calls or the arrival of data from a device.

Mcs§age 1 Message 2 Message 3

Block ’ L~

Figure 10.21. Streams Messages

When a process writes a stream, the kernel copies the data from user space into
message blocks allocated by the stream-head. The stream-head module invokes the
put procedure of the next queue module, which may process the message, pass it
immediately to the next queue, or enqueue it for later processing. In the latter
case, the module links the message block headers on a linked list, forming a two-
way linked list (Figure 10.21). Then it sets a flag in its queue data structure to
indicate that it has data to process, and schedules itself for servicing. The module
places the queue on a linked list of queues requesting service and invokes a




104 STREAMS 347

scheduling mechanism; that scheduler calls the service procedures of each queue on
the list. The kernel could schedule modules by software interrupt, similar to how it
invokes functions ia the callout table (as described in Chapter 8); the software
interrupt handler calls the individual service procedures.

| Inode of
device file

Output Input
queue queue

St:ream Head

Line Output Input
Discipline | queue queue

Terminal | Output | Input
Driver queue queue

Figure 10.22. Pushing a Module onto a Stream

Processes can “push” modules onto an opened stream by issuing ioct/ system
calls. The kernel inserts the pushed module immediately below the stream head
and connects the queue pointers to keep the structure of the doubly linked list.
Lower modules on the stream do not care whether they are communicating with the
stream head or with a pushed module: The interface is the put procedure of the
next queue on the stream; the next queue belongs to the module just pushed. For
example, a process can push a line discipline module onto a terminal driver stream
10 do erase and kill character processing (Figure 10.22); the line discipline module
does not have the same interfaces as the line disciplines described in Section 10.3,
but its function is the same. Without the line discipline module, the terminal driver
does not process input characters, and such characters arrive unaltered at the
stream-head. A code segment that opens a terminal and pushes a line discipline
may look like this:

fd = open("/dev/ttyxy", O_ RDWR);
ioctl(fd, PUSH, TTYLD);
where PUSH is the command name and TTYLD is a number that identifies the line

discipline module. There is no restriction to how many modules can be pushed onto
a stream. A process can “‘pop” the modules off a stream in last-in-first-out order,
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using another ioct!/ system call.
ioctl(fd, POP, 0);

Given that a terminal line discipline module implements regular terminal processing
functions, the underlying device can be a network connection instead of a
connection to a single terminal device. The line discipline module works the same
way, regardless of the module below it. This example shows the greater flexibility
derived from the combination of kernel modules.

10.4.1 A More Detailed Example of Streams

Pike describes an implementation of multiplexed virtual terminals using streams
(see [Pike 84]). The user sees several virtual terminals, each occupying a separate
window on a physical terminal. Although Pike’s paper describes a scheme for an
ntelligent graphics terminal, it would work for dumb terminals, too; each window
would occupy the entire screen, and the user would type a control sequence to
switch between virtual windows.

User Level [ sh 1 l l sh 2 ] I mpx J

Kernel Level

ttyld ttyld msg msg
Z
y
pty pty
pairl | [a],la pair 2

driver

Figure 10.23. Windowing Virtual Terminals on a Physical Terminal

Figure 10.23 shows the arrangement of processes and kernel modules. The user
invokes a process, mpx, to control the physical terminal. Mpx reads the physical
terminal line and waits for notification of control events, such as creation of a new
window, switching control to another window, deletion of a window, and so on.
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/* assume file descriptors 0 and 1 already refer to physical tty */

for (;;) /* loop */

{
select(input); /* wait for some line with input */
read input line;
switch (line with input data)

{

case physical tty: /* input on physical tty line */
if (control command) /* e.g. create new window */
{

open a free pseudo—tty;
fork a new process:

if (parent)

{

push a msg discipline on mpx side;
‘continue; /* back to for loop */
}
/* child here */
close unnecessary file descriptors;
open other member of pseudo—tty pair, get
stdin, stdout, stderr;
push tty line discipline;
exec shell; /* looks like virtual tty */
}
/* “regular” data from tty coming up for virtual tty */
demuitiplex data read from physical tty, strip off
headers and write to appropriate pty;
continue; /* back to for loop */

case logical tty: /* a virtual tty is writing a window */
encode header indicating what window data is for;
write header and data to physical tty;
continue; /* back to for loop */

Figure 10.24. Pseudo-code for Multiplexing Windows

When it receives notification that a user wants to create a new window, mpx
creates a process to control the new window and communicates with it over a
pseudo-terminal (abbreviated pty). A pty is a software device that operates in
pairs: Output directed to one member of the pair is sent to the input of the other
member; input is sent to the upstream module. To set up a window (Figure 10.24),
mpx allocates a pty pair and opens one member, establishing a stream to it (the
driver open insures that the pty was not previously allocated). Mpx jorks, and the
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new process opens the other member of the pty pair. Mpx pushes a message
module onto its pty stream to convert control messages to data messages (explained
in the next paragraph), and the child process pushes a line discipline module onto
its pty stream before execing the shell. That shell is now running on a virtual
terminal; to the user, it is indistinguishable from a physical terminal.

The mpx process is a multiplexer, forwarding output from the virtual terminals
to the physical terminal and demultiplexing input from the physical terminal to the
correct virtual terminal. Mpx waits for the arrival of data on any line, using the
select system call. When data arrives from the physical terminal, mpx decides
whether it is a control message, informing it to create a new window or delete an
old one, or whether it is a data message to be sent to processes reading a virtual
terminal. In the latter case, the data has a header that identifies the target virtual
terminal; mpx strips the header from the message and writes the data to the
appropriate pty stream. The pty driver routes the data through the terminal line
discipline to reading processes. The reverse procedure happens when a process
writes the virtual terminal: mpx prepends a header onto the data, informing the
physical terminal which window the data should be printed to.

If a process issues an ioctl on a virtual terminal, the terminal line discipline sets
the necessary terminal settings for its virtual line; settings may differ for each
virtual terminal. However, some information may have to be sent to the physical
terminal, depending on the device. The message module converts the centrol
messages that are generated by the ioct/ into data messages suitable for reading
and writing by mpx, and these messages are transmitted to the physical device.

10.4.2 Analysis of Streams

Ritchie mentions that he tried to implement streams only with put procedures or
only with service procedures. However, the service procedure is necessary for flow
control, since modules must sometimes enqueue data if neighboring modules cannot
receive any more data temporarily. The put procedure interface is also necessary,
because data must sometimes be delivered to a neighboring module right away.
For example, a terminal line discipline must echo input data back to the terminal
as quickly as possible. It would be possible for the write system call to invoke the
put procedure of the next queue directly, which in turn would call the put
procedure of the next queue, and so on, without the need for a scheduling
mechanism. A process would sleep if the output queues were congested. However,
modules cannot sleep on the input side, because they are invoked by an interrupt
handler and an innocent process would be put to sleep. Intermodule
communication would not be symmetric in the input and output directions,
detracting from the elegance of the scheme.

It would also have been preferable to implement each module as a separate
process, but use of a large number of modules could cause the process table to
overflow. They are implemented with a special scheduling mechanism — software
interrupt — independent of the normal process scheduler. Therefore, modules




